Fizik Öğretiminde Arduino Kullanımı Eğitimi

Eğitim Tarihi
-
Eğitim Süresi
30 Saat
Eğitim Günleri
Pazartesi
Çarşamba
Eğitim Saatleri
18:00 ~ 21:00
Eğitim Yeri
Online Eğitim
Eğitim Ücreti (TL)
3540
Eğitimin Amacı

Eğitime katılanlar;

  • Arduinoya yönelik temel bilgilere sahip olacaklar.
  • Arduino kullanarak fizik dersine yönelik deneysel uygulamalarda kullanılacak sensörlere dair kapsamlı bilgi sahibi olacaklar. 
  • Arduino kullanılan uygulamalarla fizik dersine yönelik deneysel veri toplama ve analizi süreçlerini öğrenecekler.
  • Arduino kullanarak fizik dersine yönelik deneysel projeler gerçekleştirebilecekler. 
  • Arduino tabanlı deneysel uygulamalar içeren öğretim süreçleri planlayacaklar.
  • Arduino tabanlı deneysel uygulamalar içeren değerlendirme soruları yazabilecekler. 
  • Arduino tabanlı deneysel uygulamalar içeren oyun ya da yarışmalar tasarlayabilecekler.
  • Etkili rehberlik yetenekleri kazanacaklar.
  • Arduino kullanılarak gerçekleştirilecek öğretim süreçlerinde karşılaşılabilecek durumlara karşı kapsamlı farkındalık kazanacaklar.
Kimler Katılabilir

Bu eğitim lise ve üniversite düzeyinde Fizik dersleri veren öğretmenlere yöneliktir.

Son Başvuru Tarihi
Kontenjan
Max : 15

1. Arduino’ya giriş (2 saat)
• Temel özellikleri
• Kullanım alanları
• Avantajları 
• Çalışma prensibi, besleme, veri giriş-çıkışı
• Arduino pinleri
• Sensörler 
• Arduino ve sensör bağlantıları
2. Arduino kodlarının yazımı ve yüklenmesi. (2 saat)
• Arduino IDE
• C++ kodları ile programlama
• Blok tabanlı programlama
• Yapay zekâ destekli programlama
3. Fizik derslerinde Arduino kullanımı (10 saat)
• Fizik derslerine uygun algoritma tasarlama
• Fizik derslerinde kullanabileceğimiz sensörler.
• Fizik dersinde kullanılan sensörlerle veri toplama ve verilerin analiz edilmesi
• Fizik derslerinde Arduino ile gerçekleştirilebilecek örnek uygulamalar.
4. Arduino kullanılan Fizik öğretim süreçleri planlama (10 saat)
• Arduino’nun Fizik derslere entegrasyonu
• Arduino ve 5E modeli
• Arduino ve STEM Eğitimi
• Arduino ve aktif öğrenme
• Arduino ve işbirlikli öğrenme
• Arduino kullanarak yarışma/oyun süreçleriyle öğretim
• Arduino entegre edilmiş örnek değerlendirme soruları yazma ve öğrenci değerlendirmesi süreci
• Örnek uygulamalar
• Ödevlendirme 
5. Uygulamalarda gerçekleştirilecek öğrenci yönlendirmelerine dair önemli noktalar (6 saat)
• Etkili rehberlik 
• Olası öğrenci soruları
• Karşılaşılabilecek olası olumsuz durumlar
• Karşılaşılan sorunları çözmek adına yapılması gerekenler

 

Katılımcılar Tarafından Temin Edilmesi Gereken Ekipmanlar:

  1. Arduino UNO (klon ya da orijinal olabilir) ve bağlantı kablosu
  2. Load-cell kuvvet (ağırlık sensörü) 1 kg (alternatif olarak 5kg ya da 20 kg olabilir)
  3. HC-SR04 mesafe sensörü
  4. TCRT5000 Kızılötesi Yansıma sensörü
  5. DS18B20 Sıcaklık Sensörü
  6. Ses Sensör Kartı - Mikrofon Sensörü
  7. LDR Modül
  8. L298 DC ve Step Motor Sürücü Modülü
  9. Dişi-erkek ve erkek-erkek jumper kablolar
  10. Breadboard
  11. 10K potansiyometre
  12. 9V pil
  13. Rpm Motor ve Tekerlek Seti
  14. HC05 Arduino Bluetooth Modül + 2.2 K ve 1K direnç 
  15. 220 ohm direnç
  16. LED
  17. Makara sistemi, ip, metal küre, sarmal yay (opsiyonel)
     

Atakan Çoban

Atakan Çoban

EĞİTİM

2018 - 2023          Dokuz Eylül Üniversitesi - Fizik Öğretmenliği - Doktora

                           Tez Konusu: : Arduino Tabanlı STEM ve Algodoo Tabanlı Simülasyonun Mekanik Öğretimine Etkisinin Araştırılması

2016 - 2018          Dokuz Eylül Üniversitesi - Fizik Öğretmenliği - Yükseklisans

2011 - 2016          Dokuz Eylül Üniversitesi - Fizik Öğretmenliği - Lisans

                    
İŞ TECRÜBESİ

2019 - Halen          Yeditepe Üniversitesi - Fizik Bölümü - Araştırma Görevlisi

2016 - 2019           Çalışkan Kurs Merkezi - Fizik Öğretmeni

 

 

Hakemli Dergilerde Yayınlanmış Makaleler

  1. Çoban, A., Çoban, N., & Çoban, E. (2023). Energy Conservation Analysis Using Arduino. The Physics Teacher, 61(4), 295-297.
  2. Çoban, A., Akat, E., & Erdoğan, A. C. (2023) Two different experiments with the rope-attached sphere by using Arduino, Physics  Education, 58(1) 015022
  3. Çoban, A., & Erol, M. (2022). STEM Education of Kinematics and Dynamics Using Arduino. The Physics Teacher, 60(4), 289-291.
  4. Çoban, A., & Erol, M. (2021). Teaching kinematics via arduino based STEM education material. Physics Education, 57(1), 015010.
  5. Çoban, A., & Erol, M. (2021). Teaching Impulse-Momentum Law by Arduino Based STEM Education Material. The Physics Educator, 3(02), 2150006.
  6. Çoban, A., & Erol, M. (2021). Arduino-based STEM education material: work-energy theorem. Physics Education, 56(2), 023008.
  7. Çoban, A. (2021). Algodoo for online education: impulse and momentum activities. Physics Education, 56(2), 025017.
  8. Çoban, A., & Erol, M. (2020). Validation of Newton’s second law using Arduino: STEM teaching material. Physics Education, 56(1), 013004.
  9. Çoban, A., & Erol, M. (2020). Influence of Problem-Based Learning on Conceptual Understanding and Critical Thinking regarding Quantum Physics. Latin-American Journal of Physics Education, 14(4), 3.
  10. Çoban, A., & Boyacı, S. (2020). The calculation of kinetic and static friction coefficient and friction graph analysis using Arduino. Physics Education, 56(1), 013003.
  11. Çoban, A. (2020). Determination of kinetic friction coefficient using an Arduino. Physics Education, 55(6), 063009.
  12. Çoban, A., & Çoban, N. (2020). Determining of the spring constant using Arduino. Physics Education, 55(6), 065028.
  13. Şengören, S. K., Çoban, A., & Büyükdede, M. (2020). Physics teacher candidates’ awareness of idealizations used in mathematical models. European Journal of Physics, 42(1), 015705.
  14. Çoban, A., & Çoban, N. (2020). Using Arduino in physics experiments: determining the speed of sound in air. Physics Education, 55(4), 043005.
  15. Çoban, A., & Mustafa, E. (2019). Development of Three-Tier Scale Insufficiencies of Classic Physics Conceptual Comprehension Scale (ICPCCS). Online Science Education Journal, 4(2), 154-165.
  16. Tanel, R., Büyükdede, M., & Çoban, A. (2019). Using fidget spinners in teaching some physics concepts. Physics Education, 54(3), 035012.
  17. Coban, A., & Erol, M. (2019). Teaching and determination of kinetic friction coefficient using smartphones. Physics Education, 54(2), 025019.
  18. Erol, M., & Çoban, A. (2018). Time Dependant Momentum Operator and Time Evolution of Free Quantum Particles. Advances in Physics Theories and Applications, 63, 57-68.

 

Konferans Sunumları

  1. STEM in Physics Education: Determination of Coefficient of Kinetic Friction Using Arduino. 14th National Science and Mathematics Education Congress (UFBMEK2021) (Sözlü sunum) 
  2. Using Algodoo in Distance Education: ?Impulse and Momentum Activities. 14th National Science and Mathematics Education Congress (UFBMEK2021) ( Sözlü sunum) 
  3. Arduino Based STEM Educational Material: Work-Energy Theorem. II. International Science, Education, Art and Technology Symposium ( Sözlü sunum) 
  4. Arduino Supported STEM Application: Determination of Liquid Density. II. International Science, Education, Art and Technology Symposium (Sözlü sunum) 
  5. Developing a Three-Stage Test of Conceptual Understanding on the Inadequacy of Classical Physics. International Symposium on Science, Education, Art and Technology (Sözlü sunum) 
  6. The Effect of Problem-Based Teaching Method on Students' Conceptual Understanding of Quantum Physics "Inadequacies of Classical Physics". I. International Symposium on Science, Education, Art and Technology (Sözlü sunum) 
  7. Limitations in Physics Education. 5th International Instructional Technologies amp Teacher Education Symposium (Sözlü sunum)
  8. STEM in physics education. 33rd International Physics Congress of Turkish Physics Society (Sözlü sunum) 
  9. Measurement of Sound Speed by Using Smartphone Technology. 33rd International Physics Congress of Turkish Physics Society (Sözlü sunum)
  10. Mathematical Modeling in Physics Education: Physics Pendulum. 3. National Physics Education Congress (Sözlü sunum) 
  11. Using Smartphones in Physics Education: Measuring the Acceleration and Calculating the Coefficient of Kinetic Friction. 3. National Physics Education Congress (Poster) 
  12. Determination of Physics Teacher Candidates' Conceptual Understanding Levels of Universal Gravitation Law. 32nd International Physics Congress of Turkish Physics Society, (Poster)
  13. Development of the Time Dependent Momentum Operator. 32nd International Physics Congress of Turkish Physics Society, (Sözlü sunum)